skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cramer, Laura A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent heterogeneous catalysis studies have demonstrated that synergy between Ag and Cu can lead to more selective partial oxidation chemistries. We performed a series of scanning tunneling microscope experiments to gain a better understanding of the AgCu system under oxidative conditions. These experiments were carried out by exposing sub‐monolayer coverages of Ag on Cu(111), in the form of a near‐surface alloy (NSA), to range of oxygen exposures and temperatures. This enabled us to study the initial stages of oxidation of well‐defined Ag/Cu interfaces with atomic resolution and thereby understand the dynamic response of the AgCu NSA to oxygen environments. At low oxygen exposures, oxidation was observed on exposed Cu terraces and at the interface between the AgCu NSA and Cu(111). Higher oxygen exposure led to the segregation of Cu atoms up through the Ag layer and the appearance of surface adsorbed oxygen. Significant phase segregation of Cu was then observed at higher oxygen exposures at elevated temperatures, evidenced by the formation of Cu oxide patches within and on the top of the Ag layer. These results provide a more detailed picture of how AgCu NSAs interact with, and restructure in response to, oxygen. 
    more » « less